
Remote Programming Interface
(RPI) for the Agilent
Technologies 16700-Series
Logic Analysis System
Help Volume
© 1999-2002 Agilent Technologies. All rights reserved.

Remote Programming Interface Programmer's Guide

This is a programmer's guide for the Remote Programming Interface
(RPI) for the Agilent Technologies 16700-series logic analysis system.
Its purpose is to give you the neccessary information to remotely
control the logic analysis system through the execution of remote
programs.

In addition to this programmer's guide, you should have a general
knowledge of programming in the Basic or C programming language.
You should also have a basic understanding of making measurements
with a logic analyzer.

The RPI is available in two forms. While only the ASCII RPI is explained
in this programmer's guide, information is available on the ActiveX/
COM RPI when you upload the Agilent IntuiLink 16700 software
components and access the Excel Add-in Toolbar help system.

“Setup and
Configuration” on
page 9

Information on the setup of the logic analysis syste m and your remote
computer.

• “Remote Programming Interface RPI Overview” on page 11

• “RPI Architecture” on page 12

• “RPI for UNIX” on page 13

• “Use Model” on page 14

• “System Setup” on page 15

• “Learning and Debugging RPI Programs” on page 16

• “Data Transfers” on page 17

• “Sample Programs” on page 18

• “RPI General Characteristics” on page 19

• “Programming Conventions” on page 21

“System Commands”
on page 23

A command reference for the sytem level commands.
2

Remote Programming Interface Programmer's Guide
• “clear” on page 25

• “config” on page 26

• “ctl_port” on page 27

• “lock, unlock” on page 28

• “modules” on page 29

• “session_mgr” on page 32

• “start” on page 33

• “status” on page 35

• “stop” on page 37

• “tools” on page 38

• “version” on page 39

• “wait” on page 40

“Hardware Module
Commands” on
page 43

A command reference for all the hardware modules.

• “analyzer” on page 45

• “scope” on page 56

• “pattgen” on page 62

• “emulator” on page 64

“Software Tool
Commands” on
page 67

A command reference for all the software tools.

• “listing” on page 69

• “compare” on page 71

• “fileout” on page 75

See Also Connectivity Help (see the PC Connectivity help volume)

Main System Help (see the Agilent Technologies 16700A/B-Series Logic

Analysis System help volume)

Glossary (see page 77)
 3

Remote Programming Interface Programmer's Guide
4

Contents
Remote Programming Interface Programmer's Guide

1 Setup and Configuration

Remote Programming Interface RPI Overview 11

RPI Architecture 12

RPI for UNIX 13

Use Model 14
Create a Configuration File 14
Load-Run-Store 14

System Setup 15

Learning and Debugging RPI Programs 16

Data Transfers 17

Sample Programs 18

RPI General Characteristics 19
Agilent IntuiLink ActiveX Automation Server 19
Procedural (ASCII) User Application 19

Programming Conventions 21

2 System Commands

clear 25

config 26
 5

Contents
ctl_port 27

lock, unlock 28

modules 29

session_mgr 32

start 33

status 35

stop 37

tools 38

version 39

wait 40

3 Hardware Module Commands

analyzer 45
Options for Module Setup 45
Options for Data Query 49
Options for the Trigger Subsystem 52

scope 56
Options to Access Data Capture 56
Options to Access Trigger and Measurement Subsystems 58

pattgen 62

emulator 64
6

Contents
4 Software Tool Commands

listing 69

compare 71

fileout 75

Glossary

Index
 7

Contents
8

1

Setup and Configuration

In this chapter you will find information on setting up your remote
computer and using the RPI procedural commands to remotely control
the logic analysis system.
9

Chapter 1: Setup and Configuration
• “Remote Programming Interface RPI Overview” on page 11

• “RPI Architecture” on page 12

• “RPI for UNIX” on page 13

• “Use Model” on page 14

• “Create a Configuration File” on page 14

• “Load-Run-Store” on page 14

• “System Setup” on page 15

• “Learning and Debugging RPI Programs” on page 16

• “Data Transfers” on page 17

• “Sample Programs” on page 18

• “RPI General Characteristics” on page 19

• “Agilent IntuiLink ActiveX Automation Server” on page 19

• “Procedural (ASCII) User Application” on page 19

• “Programming Conventions” on page 21
10

Chapter 1: Setup and Configuration
Remote Programming Interface RPI Overview
Remote Programming Interface RPI Overview

Agilent Technologies Remote Programming Interface (RPI) allows you
to create custom programs to control your Agilentís 16600A and
16700A/B series logic analyzers. RPI is optimized for use in conjunction
with Microsoft Win95/98/NT platforms or Unix platforms.

On the PC/Windows platform RPI takes advantage of Microsoft's
Component Object Model and ActiveX automation technologies to
allow you to write custom programs using Visual Basic, Visual C++,
VBA or other COM compatible programming language.

Under Unix, RPI provides a procedural (or ASCII) based programming
model. How you use RPI is dependent upon the development platform
you have chosen to do your coding on.

NOTE: It is important that you reference the appropriate documentation describing
either the PC/Windows/COM RPI or Unix ASCII RPI (depending on what
development environment you have chosen to use).

Figure 1. Remote Programming Interface Architecture
11

Chapter 1: Setup and Configuration
RPI Architecture
RPI Architecture

Under Windows, the ActiveX Automation Server provides PC
applications with a COM interface to the logic analyzer and uses RPI
socket commands to communicate with the logic analyzer itself (see
Figure 1). This allows you to write programs that communicate with
the logic analyzer using a COM model definition thus taking advantage
of the ease of programming offered by the Visual Studio Environment
(that is, Visual Basic or Visual C++).

From Unix environments, RPI uses simple, ASCII text commands to
communicate to the logic analyzer. This makes it easy to write shell
scripts or HLL programs without the need to install any other third
party software on your workstation.
12

Chapter 1: Setup and Configuration
RPI for UNIX
RPI for UNIX

The Procedural RPI is a simple mechanism that allows a user on a
remote host to open a TCP socket connection to an Agilent 16700A/B-
series logic analyzer instrument. Through this connection, simple
ASCII string commands are sent, ASCII responses from the instrument
are received, and binary or ASCII trace data is transferred to the host
running the RPI program.
13

Chapter 1: Setup and Configuration
Use Model
Use Model

In order to create an easy to use, yet powerful remote control
mechanism, the design of the RPI adheres to the basic use model of
"load-run-store".

This means that when you want to create a remote control application
or a program that runs repetitive tests, you simply go through each test
once saving the logic analyzer configuration for each test you wish to
repeat later. Then, from your program, you recall the appropriate logic
analyzer configuration, run it, and store or act on the results as
appropriate.

• “Create a Configuration File” on page 14

• “Load-Run-Store” on page 14

Create a Configuration File

Set up an instrument configuration for the desired measurement while
sitting in front of the logic analyzer. Save this configuration to a file.
This process allows you to use all the power of the instrument to setup
your desired measurement.

Load-Run-Store

Once a configuration file is saved, write an RPI program that remotely
loads this pre-saved file. Modify a few critical measurement
parameters, run the analyzer until the measurement is complete, then
store the results, or the raw trace data for post-processing on the host.
14

Chapter 1: Setup and Configuration
System Setup
System Setup

The RPI language is easily used on any host platform. However, before
you can run your RPI program, the logic analyzer must be set up on the
LAN. This is done by getting the appropriate network information from
your system administrator, and entering this information into the logic
analyzer.

1. Click the System Administration icon on the system screen, then select the
Networking tab.

2. Click Network Setup and enter the appropriate informantion.

3. Now select the Security tab and make sure the Remote Programming
Interface is enabled.

NOTE: To increase security when the RPI is not being used, disable the RPI interface
from this screen.
15

Chapter 1: Setup and Configuration
Learning and Debugging RPI Programs
Learning and Debugging RPI Programs

Once setup on the LAN, you are ready to connect and start writing and
debugging RPI programs. A simple way to learn how to program using
RPI is to experiment with the RPI command language by opening a
telnet connection from your remote computer to the logic analysis
system specifying the special port address of "6500".

For example, type: "telnet my_logic_analyzer 6500" where
"my_logic_analyzer" is its IP address or machine alias name, then press
the Enter key.

This process opens a direct socket connection to the RPI in the logic
analysis system. You know you have a connection when the "->" prompt
appears on a blank command line. This command line prompt indicates
that the RPI is ready to accept a command.

Exercise:

At the prompt type: "modules"

The RPI polls the instrument cardcage and reports a list of all HW
modules currently in the frame.

At the prompt type: "lock".

The RPI puts a full screen message box on the instrument console to
warn people that the instrument is currently in use via the RPI.

This telnet mechanism is also useful in helping to debug RPI programs
under development. You can have a debug telnet connection open at
the same time an RPI program is running.
16

Chapter 1: Setup and Configuration
Data Transfers
Data Transfers

To provide both a fast and easy to use process for data transfer, an
uncompressed binary format is used. One of the benefits of this format
is that it's easy to decode and the software required to decode the
binary is very simple.

It should be noted that since all data values are transferred in byte-
aligned columns, there will be some generation of white space,
especially when transferring large numbers of single-bit values.

Although data transfers from logic analyzers and scopes are in binary
form, data transfers from the Listing tool will come in ASCII form. For
the Listing tool, the ASCII form allows GUI control over the numeric
formats used, as well as the use of powerful SW Analysis tools such as
the Serial Analysis tool or the Filter tool.
17

Chapter 1: Setup and Configuration
Sample Programs
Sample Programs

Source code for some sample RPI programs and an RPI utility library is
shipped with your Agilent logic analyzer. They can be found in the
directory "/logic/demo/rpi/".

You can transfer all files in this directory, including the makefile, onto
your remote host using the various connectivity methods available
from the logic analysis system. These include ftp, NFS, PC file sharing,
or simply using the built-in floppy drive.

After the files are transferred, you can compile and run the programs
to get familiar with the basic capabilities of the RPI.
18

Chapter 1: Setup and Configuration
RPI General Characteristics
RPI General Characteristics

The Remote Programming Interface (RPI) is available in two forms.
While only information for the procedural (ASCII) user application is
documented in this programmer's guide, the following general
characteristics apply. For additional information on the Agilent
IntuiLink ActiveX Automation Server, refer to the help system included
with the Excel Add-in Toolbar.

• “Agilent IntuiLink ActiveX Automation Server” on page 19

• “Procedural (ASCII) User Application” on page 19

Agilent IntuiLink ActiveX Automation Server

The Agilent IntuiLink ActiveX Automation Server is based on the
Microsoft Component Object Model (COM). The Agilent IntuiLink
package needs to be installed on the PC host. This package can be
downloaded from the instrument's web page.

The Agilent 16600A or 16700A/B series logic analysis system must be
fully powered up before attempting to connect to the analyzer. A single
user is allowed to connect to the logic analysis system server. If another
user tries to connect when a user is already connected or before the
logic analysis system is fully powered up, he or she will receive an error
indicating the connection is refused.

The logic analysis system will continue to run after a remote
programming session disconnects.

Procedural (ASCII) User Application

The Agilent 16600A or 16700A/B series logic analysis system must be
fully powered up before attempting to connect to the analyzer.

The logic analysis system will continue to run after a remote
19

Chapter 1: Setup and Configuration
RPI General Characteristics
programming session disconnects.

The procedural user application operates within the main thread of the
logic analysis system application.
20

Chapter 1: Setup and Configuration
Programming Conventions
Programming Conventions

Each command is followed by its command options, all separated by a
space. If any command option has argument types, they follow their
option, all separated by a space. In the following example, the scope
command has three options, "-n name", "-c", and "-meas". The -meas
option includes two argument types in "period" and "risetime". The
program code would look like the following:

scope -n Oscilloscope -c 1 -meas period risetime

where:

scope

Is the base command.

-n Oscilloscope

Is an option that names a scope module as the focus.

-c 1

Is an option to specify channel 1.

-meas

Is an option that initiates an automatic measurement query.

period risetime

Two automatic measurement argument types to return.

Return results (for Oscilloscope, channel 1):

period: 9.9E37
risetime: 0.000000420800

Other Considerations

Commands, options, and argument types can be full lowercase, full
uppercase, or capitalized first letter. All query returns are in lowercase.
21

Chapter 1: Setup and Configuration
Programming Conventions
22

2

System Commands

In this chapter you will find a description of remote control commands
that act on the system components such as file operations, module
identification, frame configuration, network connectivity and system
run function control.
23

Chapter 2: System Commands
• “clear” on page 25

• “config” on page 26

• “ctl_port” on page 27

• “lock, unlock” on page 28

• “modules” on page 29

• “session_mgr” on page 32

• “start” on page 33

• “status” on page 35

• “stop” on page 37

• “tools” on page 38

• “version” on page 39

• “wait” on page 40
24

Chapter 2: System Commands
clear
clear

This command clears the workspace of all modules and tools.

This command does NOT affect any system administration functions
such as LAN settings, printer settings, etc.

Syntax: clear

Options: No options

Example: clear

Clears the workspace of all modules and tools.
25

Chapter 2: System Commands
config
config

Use this command to load a previously saved instrument configuration
file. This operation will restore the instrument to the same setup that
was stored in the configuration file. It also allows the currently
configured instrument to save itís current state to a new configuration
file.

NOTE: Configuration files can be located on the local hard drive of the instrument
OR, through the use of NFS mounting and PC sharing, can be located on any
mountable UNIX or sharable PC disk drive.

When saving a configuration, if the file exists, an error message will
result. However, using the -f argument will force an overwrite even if
file(s) exist.

Syntax: config [-l | -s [-f]] config_file

Options: -l config_file

Loads a configuration file named "config_file".

-s [-f] config_file

Saves the current configuration and data to a file named "config_file".

Examples: config -l pentium._E

Loads a configuration file named "pentium._E".

config -s myconfig

Saves the current workspace configuration with data to a file named
"myconfig".
26

Chapter 2: System Commands
ctl_port
ctl_port

This command provides access to the instrument target control port. It
will read and return the value present on the pins of the control port or
set the port to a specific value. Values for the target control port can be
set using the same syntax as analyzer -trig commands:

#hfx Hex where upper 4 bits are high and lower 4 bits stay the
same (don't care).

#b11110000 Binary where upper 4 bits are high and lower 4 bits are low.

#q377 Octal where all 8 bits are high.

#bxxxx1xxx Set bit 4 high, leave all others the same.

Syntax: ctl_port [? | value]

Options: ?

Reads the target control port and returns an 8-bit value.

value

Sets the target control port to an 8-bit value.

Returns: <8 bit value>

Examples: ctl_port ?

Reads the 8-bit value from the target control port.

Returns:
#he

ctl_port #hfx

Sets the target control port output pins: upper 4bits go to High, lower 4
bits stay what they were.
27

Chapter 2: System Commands
lock, unlock
lock, unlock

This command coordinates access of the instrument with other users.
When locked, a full screen message is displayed indicating that the
instrument is currently in use by an RPI program. If desired, a custom
message can be shown on the local display instead of a default
message. As an example, a custom message might give information as
to who has the unit locked. The instrument can then be unlocked when
desired.

Syntax: lock ["message text"], unlock

Options: lock "message text"

Locks all users out of the instrument. If a custom message is sent, it must
be contained in quotes.

unlock

Unlocks the instrument to allow other users.

Examples: lock

Locks the instrument and displays a system default message.

unlock

Unlocks a currently locked instrument.

lock "Currently in use by Tom"

Locks the instrument and displays your custom message "Currently in use
by Tom".
28

Chapter 2: System Commands
modules
modules

Use this command to poll the system to identify the HW modules in the
system, and return information on Type, Slot, and State. There are two
states that modules can be in, "active" or "available". Available means
that the HW module is plugged into a slot in the frame and is available
to be included in a measurement. The second state is "active". In this
state, the HW module is "activated" by being included in a
measurement setup. When included in a measurement setup, the HW
module is both visible in the instrument workspace and from the
"Navigate" pulldown menu in the instrument GUI. Active modules have
either the default or user-defined ASCII names associated with them.

Syntax: modules [-a | -slot slot_id | -expanders]

Options: with no option

Returns a list of both Active and Available modules. Type, Slot, and State
information for each listed module is returned.

-slot slot_id

Returns information on a module in a specified "slot_id". The slot identifier
is A-J for measurement modules and 1-4 for emulation modules.

-a

Returns a list of Active modules only. Type, Slot, and State information for
each listed module is returned.

-expanders

Lists how many (and which) expander/slave cards each slot has.

Returns: For each module listed, the following information is returned:

Type, Slot, State, "Name", "Model", and "Description"

The "Type", is a 2-character string representing a logic analyzer (LA),
oscilloscope (SC), pattern generator (PG), and emulation (EM).

The "Slot", is the letter or number identifier of the slot (A-J for
measurement modules, 1-4 for emulation modules). Most analyzers
have 2 logical machines. The second machine is displayed as B2 for slot
B, machine 2. The "State", is shown as either a "1" if the module is
29

Chapter 2: System Commands
modules
active, or "0" if inactive and available.

Also returned is the following HW module information: "Name",
"Model", and "Description"

Example: LA B 1 "Analyzer" "16550A" "100MHz State/500MHz
Timing" Where: LA=logic analyzer, B=slot B, 1=active state,
Name=Analyzer, Model=16550A, and Description=100MHz State/
500MHz Timing

Examples: modules

In this case, the Logic Analyzer in slot B is active, as well as the Scope in
slot E.

Returns:
LA B 1 "Analyzer" "16550A" "100MHz State/500MHz
Timing"
LA B 0 "Analyzer<B2>" "16550A" "100MHz State/500MHz
Timing"
LA D 0 "Analyzer<D>" "16556A" "1M Sample 100 MHz
State/400 MHz Timing"
LA D 0 "Analyzer<D2>" "16556A" "1M Sample 100 MHz
State/400 MHz Timing"
SC E 1 "Scope<E>" "16534A" "2GSa/s Oscilloscope"
EM 1 0 "Emulator<1>" "Emulation Module" "Not
Configured"

modules -a

Query only the active modules. Note how only the two active modules from
above are listed.

Returns:
LA B 1 "Analyzer" "16550A" "100MHz State/500MHz
Timing"
SC E 1 "Scope<E>" "16534A" "2GSa/s Oscilloscope"

modules -expanders

Slot D is a master card, with 1 expander card in slot C: Slot A: 0
expanders
Slot B: 0 expanders
Slot D: 1 expanders
C
Slot E: 0 expanders
30

Chapter 2: System Commands
modules
Slot 1: 0 expanders
31

Chapter 2: System Commands
session_mgr
session_mgr

This command accesses the logic analyzer session manager. A query
(session_mgr ?) returns the current status of the logic analyzer as
either "Running" if a measurement session is currently running, or
"Stopped" if no measurement session is running.

If no session is running, one can be started with "session_mgr -start". If
you try to start a session when one is currently running, an error is
returned. You can stop a currently running session with "session_mgr -
stop". If you try to stop a session when one is not running, an error is
returned.

When a new session is started, it automatically is started in the mode
last saved which will either be "exclusive" or "shared".

When either a new session is started, or a currently running session is
stopped, your connection is automatically closed and you will have to
re-connect to the logic analyzer to initiate subsequent commands.

Syntax: session_mgr [? | -start | -stop]

Options: ?

Returns current session status of either ìRunningî or ìStoppedî.

-start

Starts a new session.

-stop

Stops a currently running session.

Example: session_mgr ?
Stopped

Queries for a system status, which returns "Stopped".
32

Chapter 2: System Commands
start
start

This command starts HW modules running. The definition of running is
dependent on the HW module selected. For analyzer modules,
"running" is when their trace analyzers begin looking for a trigger, when
oscilloscopes begin looking for a trigger, when pattern generators begin
generating vectors, and emulation probes start the processor running.

All active modules may be started at once by using no option,
individual modules started with -n name or -slot slot_id, and all
modules in a "group run" list can be started with the -g option.

The -rep option applies to analyzers, oscilloscopes, and pattern
generator modules but does not apply to emulation probes. When used,
it sets these modules to repetitive run mode.

Syntax: start [-n name | -slot slot_id] [-g] [-rep]

Options: no option

Starts all active modules running.

-n name

Starts the active module named "name" running.

-slot slot_id

Starts a specific module named "slot_id". The slot identifier is A-J for
measurement modules and 1-4 for emulation modules.

-g

Starts all modules configured in the group run list running.

-rep

Starts LA, SC, and PG modules running in repetitive mode.

Examples: start

Starts all active modules running.

start -n Emulator<2>

Starts the processor in the emulation probe module named "Emulator<2>"
running.
33

Chapter 2: System Commands
start
start -g -rep

Starts all modules in the group run list running repetitively.
34

Chapter 2: System Commands
status
status

This command queries active modules and returns their measurement
status. Status information returned depends on the module being
queried. Analyzers and oscilliscopes can be stopped or running.
Pattern generators can be stopped or running. Emulators can be
running, reset, or in a break state. All active modules may be queried at
once by using no option, individual modules with -n name or -slot
slot_id, and all modules grouped in the "group run" list are queried with
the -g option.

Remember an emulator is not a measurement module, so the state of
the target processor on an emulator has no impact on the result of this
command unless it is explicitly selected via the -n name.

Syntax: status [-n name | -slot slot_id] [-g] [-v] [-text] [-clear]

Options: with no option

Returns status of the frame. Returns either "running" or "stopped".

-n name

Returns the status of the active module named "name".

-slot slot_id

Returns the status of a specific module named "slot_id". The slot identifier
is A-J for measurement modules and 1-4 for emulation modules.

-g

Returns the status of all modules in the group run list.

-v

Returns verbose status information instead of running/stopped.

-text

Retrieve the text messages from the Run Status display.

-clear

Clear the text messages in the Run Status display.

Examples: status

Query if the frame is running anything.
35

Chapter 2: System Commands
status
Returns:
stopped

status -v

Query status for all active modules in the system.

Returns:
Analyzer<A>: stopped
Emulator<3>: MPC860 In Background

status -n PatternGen<J>

Query status for current module named "PatternGen<J>".

Returns:
running

status -g -v

Query status for all active modules in the group run list.

Returns:
Pentium: waiting for trigger
Analyzer<F>: waiting in sequence level 3
Emulator<3>: running

status -text

Show the text in the Run Status messages area.

Returns:
Analyzer<E>: Calibration Error

status -clear

Clear the messages area in the Run Status display
36

Chapter 2: System Commands
stop
stop

This command stops HW modules that are actively running. The
definition of running is dependent on the HW module selected. For
analyzer modules, "running" is when their trace analyzers begin looking
for a trigger, when oscilliscopes begin looking for a trigger, when
pattern generators begin generating vectors, and emulation probes
start the processor running.

All running HW modules may be stopped at once by using no option,
individual modules may be stopped with -n name or -slot slot_id, and a
selected list of modules grouped together in the "group run" list are
stopped with the -g option.

The Stop command, using no option, will NOT stop the target
processor connected to an emulation module. To do this you must
select the emulation module with the -n name or -slot slot_id option.

Syntax: stop [-n name | -slot slot_id] [-g]

Options: with no option

Stops all actively running modules.

-n name

Stops the actively running HW module named "name".

-slot slot_id

Stops a specified module in the slot "slot_id". The slot identifier is A-J for
measurement modules and 1-4 for emulation modules.

-g

Stops all running modules in the group run list.

Examples: stop

Stops all actively running modules.

stop -n PatternGen

Stops the actively running pattern generator named "PatternGen".

stop -g

Stops all actively running modules in the group run list.
37

Chapter 2: System Commands
tools
tools

This command queries the system and identifies the active SW tools.
Tools that are "active" are currently included in a measurement setup
and appear in the instrument workspace and from the "Navigate"
pulldown menu in the instrument GUI.

Syntax: tools

Options: No options.

Returns: Name: type (lister, compare, fileout)

Examples: tools

Returns:
Filter<1>: Filter
Listing<1>: Listing
Compare<1>: Compare
Listing<2>: Listing
Waveform<1>: Waveform
Waveform<2>: Waveform
38

Chapter 2: System Commands
version
version

This command returns the version number for the product named by
the option. If no option is used, the version number of the system
software is returned.

Syntax: version [product]

Options: with no option

Returns the SW version of the system.

product

Returns the SW version of the named product.

Returns: Version number for system or named SW package.

Examples: version

Query version numbers of installed system SW packages.

Returns:
A.01.30.00

version MCORE

Query the SW version of the MCORE processor support package.

Returns:
A.01.31.00

version PROC-SUPPORT

Query the SW version of the PROC-SUPPORT bundle.

Returns:
A.01.30.00
39

Chapter 2: System Commands
wait
wait

This command causes the remote programming interface to pause for a
number of seconds, or until the current measurement completes. You
can wait n seconds or until the measurement completes by using both a
delay and the -complete option.

Without specifying a specific module, slot, or group to wait for, "wait -
complete" will wait until the entire instrument is stopped. By specifying
a specific slot, module, or tool name, or -g, you can wait until a single
measurement completes.

CAUTION: With out a timeout value, if a measurement never completes, remote programs
will hang.

Syntax: wait [n] [-complete] [-n name | -slot slot_id] [-g]

Options: n

Waits "n" seconds.

-complete

Waits until measurement is complete.

-n name

Waits until the named module stops.

-slot slot_id

Waits until module in the indicated "slot_id" completes.

-g

Waits until the group run group completes.

Examples wait 10

Waits 10 seconds.

wait -complete

Waits until measurement is complete.

wait 30 -complete

Wait until the measurement is complete, but not longer than 30 seconds.
40

Chapter 2: System Commands
wait
wait 120 -slot D -complete

Wait until slot D completes, but not longer than 2 minutes.

wait -n Analyzer -complete

Wait until Analyzer completes.

wait -g -complete

Wait until group run completes.
41

Chapter 2: System Commands
wait
42

3

Hardware Module Commands

In this chapter you will find a description of remote control commands
that act on the installed hardware modules.

• “analyzer” on page 45
43

Chapter 3: Hardware Module Commands
• “Options for Module Setup” on page 45

• “Options for Data Query” on page 49

• “Options for the Trigger Subsystem” on page 52

• “scope” on page 56

• “Options to Access Data Capture” on page 56

• “Options to Access Trigger and Measurement Subsystems” on page 58

• “pattgen” on page 62

• “emulator” on page 64
44

Chapter 3: Hardware Module Commands
analyzer
analyzer

The analyzer command has three series of options available. Each
series is defined as follows:

• “Options for Module Setup” on page 45 - This series of command options
accesses the setup information for the active analyzer module.

• “Options for Data Query” on page 49 - This series of command options
accesses the data captured by the active analyzer module.

• “Options for the Trigger Subsystem” on page 52 - This series of command
options control the active analyzer's trigger subsystem.

Options for Module Setup

The following command options access the setup information of an
active analyzer. The analyzer is made active by specifying its logical
name, or by its slot ID. See the note below. This command series sets or
returns information on various setup parameters for the specified
analyzer module.

Syntax: analyzer [-n name | -slot slot_id]
analyzer -mode [stnorm | stfast | tmfull | tmhalf | tmtrans | ?]
analyzer -depth [min | max |depth in k-samples | ?]
analyzer -assign [none | pod#, pod#, ... | ?]
analyzer -label ?
analyzer -label name [{pos | neg} channels | ?]
analyzer -label -d [name1, name2, ... | all]
analyzer -label -f [label_file]
analyzer -threshold pod [? | value]
analyzer -threshall value
analyzer -sethold label [bitpos] [? | value]

NOTE: The -n name option is used to specify a specific analyzer module. If there is
only one active module, the -n name option is not required. However, if there
are multiple analyzer modules active, you must use the -n name at least once
to specify a module focus, then again each time you want to change the focus
to another analyzer module.

Options: -n name

Sets the focus to the analyzer named "name".
45

Chapter 3: Hardware Module Commands
analyzer
-slot slot_id

Selects a specific analyzer located in "slot_id". The slot identifier is A-J for
measurement modules and 1-4 for emulation modules.

-acqmode [stnorm | stfast | tmfull | tmhalf | tmtrans | ?]

Sets the acquisition mode. Option arguments are stnorn=state normal,
stfast=turbostate, tmfull=timing full channel, tmhalf=timing half channel,
and tmtrans=transitional timing.

-depth [min | max | depth | ?]

Sets acquisition depth. Option arguments are min=minimum,
max=maximum, and depth=number of samples in thousands of states
(example 8=8000 samples).

-assign [none | pod#, pod#, ... | ?]

Assigns pods. Pods are identified by a slot letter (A-J), and a pod number
(1 or 2). Example, A1 or G2.

Note: All pods are assigned in pairs, so A1 will assign A1 AND A2 to the
active analyzer. G2 will assign G2 AND G1. Pod letters are not case
sensitive.

-label ?

Queries the label structure.

-label name [pos | neg {channels} | ?]

Assigns a label name, defines it as positive or negative, then assigns
channels. This is a combination of a pod# and a bit assignment as in
pod#[bits]. Bitsî is a comma separated list of channel numbers between 0
and 15, or a range like 15:0.

-label -d [name1, name2, ... | all]

Deletes specified label names (separated by commas), or "all" label names.

-label -f [label_file]

Loads a file of label assignments where label_file is the name of the file.

-threshold pod [? | value]

This command sets the logic threshold for a specific pod. The value is
specified in floating-point volts. The pod index is an integer from 1 to the
number of pods in the module. For example, if you have a two-card 16717
module (4 pods per card) in slot A with the slave card in slot B, pod index
5 equates to pod B1.
46

Chapter 3: Hardware Module Commands
analyzer
-threshall value

This command sets the logic threshold for ALL pods in the module.

-sethold label [bitpos] [? | value]

This command adjusts the setup/hold window (sampling position) for a
specified "label". You can set the position for all bits in the label, or
individually for each bit. The "value" is specified as the setup time in
picoseconds. The hold time value is set automatically based on the setup
time. Note that this option is only supported on 16715A and later logic
analyzers.

Returns: -assign ?

Returns all assigned pods.

Example:
A1,A2,C1,C2

-label ?

Returns information on all labels.

Example:
address,A1[15:0];A2[15:0]
data,C1[15:0]
read,C2[12]
write,C2[11]
control,C2[6,5,3:0]

Examples: analyzer -n Analyzer -mode ?

Sets Analyzer as active analyzer, then queries the acquisition mode.

Returns:
Run ID: 1234567890
States: -4095..4096
Times: -1.0e-06..1.0e-06
5 labels
"ADDR" 32 bits unsigned integer
"DATA" 16 bits unsigned integer
"STAT" 5 bits unsigned integer
"Time" 64 bits signed integer timescale picoseconds
"State Number" N bits signed integer

analyzer -slot C -mode stfast

Sets Analyzer <C> as active analyzer, then sets acquisition mode to
47

Chapter 3: Hardware Module Commands
analyzer
turbostate mode.

analyzer -n Analyzer<C> -clock slave

Sets Analyzer <C> as active analyzer, then sets state clock mode to slave.

analyzer -depth ?

Queries the acquisition depth of the active analyzer.

Returns:
4000

analyzer -assign ?

Queries which pods are assigned to the active analyzer.

Returns:
A1,A2,B1,B2,C1,C2

analyzer -label address,îA1[15:0];A2[15:0]î,data,îC1[15:0]î

Sets up the address and data labels in the active analyzer.

analyzer -label -d address,data

Deletes the labels address and data.

analyzer -label -f myLabels.txt

Loads all labels in myLabels.txt file into active analyzer.

analyzer -threshold 2 0.8

Set logic threshold for pod 2 to 0.8 V.

analyzer -threshold 2 ?

Query the logic threshold for pod 2.

analyzer -sethold Label1 2 4000

Set the setup time for bit 2 of "Label1" to 4000 ps.

analyzer -sethold Label1 2500

Set the setup time for all bits of "Label1" to 2500 ps.

analyzer -sethold Label1 2 ?

Query the setup time for bit 2 of "Label1".
48

Chapter 3: Hardware Module Commands
analyzer
Options for Data Query

This series of command options accesses the data captured by an
active analyzer. The analyzer is set active by the -n name or -slot slot_id
options.

These command options can also return information on the last data
captured including data size and boundary ranges. You can then select
which labels of data you are interested in and transfer all states or a
partial range of data out the communication channel.

Syntax: analyzer [-n name | -slot slot_id] [-i]
analyzer [-n name] -d [-l labellist | all] [-r start..end | all] [-t start..end |
all]
analyzer -eyefinder [run | load filename]
analyzer -sample [? | rate]

Options: -n name

Sets the focus to the analyzer named "name".

-slot slot_id

Selects a specific analyzer located in "slot_id". The slot identifier is A-J for
measurement modules and 1-4 for emulation modules.

-i

Queries for information on the last data captured.

-d [-l label1,label2...| all] [-r start..end | all]
[-t start...end | all]

Begin upload of binary data out of the analyzer. Use the -l option to list
individual labels, -r to specify a range, and -t to specify a time period.

-d [-l label1,label2...| all] [-r start..end | all]
[-t start...end | all]

Begin upload of binary data out of the analyzer. Use the -l option to list
individual labels, -r to specify a range, and -t to specify a time period.

-eyefinder run

Run eye finder setup.

-eyefinder load filename

Load eye finder results file.

-sample [? | rate]

In timing mode, this command sets the timing sample rate. The value "rate"
49

Chapter 3: Hardware Module Commands
analyzer
is specified in floating-point seconds. For example, a 10 ns sample period is
10.0e-09. The value entered will be rounded down to the nearest
supported sampling rate.

Returns: The -i information query structure returns the following:

NOTE: Transferring Transitional Timing Data. When capturing data in transitional
timing mode, data is only stored when a transition occurs. Therefore, when
accessing data captured by an active analyzer configured with transitional
timing enabled, it is recommended that you transfer all states. Transferring a
partial range of captured data may result in ambiguous data values until the
first transition within that range is observed.

Run ID: 1234567890
States: -4095..4096
Times: -1.0e-06...1.0e-06
5 labels
"ADDR" 32 bits unsigned integer
"DATA" 16 bits unsigned integer
"STAT" 5 bits unsigned integer
"Time" 64 bits signed integer timescale picoseconds
"State Number" N bits signed integer

NOTE: To select which data is sent, the -d option must be accompanied by a range or
time selection, and by a label selection.

A range selection looks like this:

-r start..end or -r all,

where start and end are integer state numbers. If the data has states
from -4095..4096, there are 8K states. The trigger position is at state
number 0.

The range can also be selected by time values, such as:

-t start..end or -t all

where start and end are floating-point values in units of seconds. The
trigger location is always at time 0.0. So, to select from -1 microsecond
to +1 microsecond:

-t -1.0e-06..1.0e-06

Finally, to select labels, the -l flag is used:

-l ADDR,DATA,STAT,Time or -l all

If a label contains white space, the label is enclosed in quotation marks:

-l "State Number","System Clock",ADDR
50

Chapter 3: Hardware Module Commands
analyzer
Once data is selected, a two-part binary data transfer occurs. First, a
simple 8-byte header is sent, indicating how many states will be
transferred, and how many bytes for each state will be sent. Then for
each state, a row of bytes is sent containing the data for each of the
selected labels as follows:

4 bytes - Number of records
4 bytes - Number of bytes per record
nrecords *bytes per record - Data

Each record contains one state or time of the data requested. For each
label selected (-l option), there are an integer number of bytes
containing the value. Labels are sorted in order by which they were
requested, and if "all" is selected, they arrive in order by which they are
listed in the -i query.

The number of bytes for each label is the lowest possible integer
number of bytes given the bit width of the label. For example, a 17-bit
label will require 3 bytes (24 bits), a 16-bit value will require 2 bytes.

Examples: analyzer -n Analyzer -i

Returns:
Run ID: 1234567890
States: -4095..4096
Times: -1.0e-06..1.0e-06
5 labels
"ADDR" 32 bits unsigned integer
"DATA" 16 bits unsigned integer
"STAT" 5 bits unsigned integer
"Time" 64 bits signed integer timescale picoseconds
"State Number" N bits signed integer

analyzer -slot C -d -l all -r all
<begin binary data transfer>
...
<end transfer>

Uploads data for all labels at all states.

analyzer -n Analyzer<C> -d -l all -t -0.001..0.001
<begin binary data transfer>
...
<end transfer>

Upload data for all labels, in the time range of -1 msec to +1 msec

analyzer -d -l addr,data -r -100..200
<begin binary data transfer>
...
<end transfer>
51

Chapter 3: Hardware Module Commands
analyzer
Upload specific data for labels "addr" and "data" in the range of -100 to 200
states.

analyzer -eyefinder load "/logic/eyefinder.dat"

Load previous eye finder results from file "/logic/eyefinder.dat".

analyzer -sample 20.0e09

Set timing sample rate to 20 ns.

Options for the Trigger Subsystem

This series of command options control the analyzer trigger subsystem.
They allow control of the trigger position, occurrence counters on
primary and secondary conditions, simple pattern matching with
ANDed/ORed pairs, simple storage qualification, two level sequencing,
simple durations and edge triggering.

The following options also allow you to recall up to 10 defined trigger
setups from a recall buffer. This allows easy, fast switching of triggers
between measurements.

Syntax: analyzer [-n name] -trig condition [store condition2] followedby condition3
[store condition4]
analyzer [-n name] -trig condition1 [occurs X] [store condition2]
followedby condition3 [occurs Y] [store condition4]
analyzer [-n name] -trig position [percent | ?]

Options: -trig anything

Set to trigger on anything and store everything.

-trig recall n

Load a prestored trigger setup from the recall buffer "n".

-trig recall ìMacro Name

Recall stored trigger setup by its name.

-trig condition1 [store condition2]

Trace for a condition 1 with optional store.

-trig condition1 [store condition2] [followedby condition3 [store
condition4]]

Trace for condition 1 followed by a condition 2 (with optional store at each
level).
52

Chapter 3: Hardware Module Commands
analyzer
-trig duration condition1 [< | >] time

Trace when you find a value occurring for the desired time.

-trig condition1 [occurs X]

Trace for condition 1 that occurs X times. See note below.

-trig condition1 [occurs X] [store condition2]

Trace for condition 1 that occurs X times with a conditional store. See note
below.

-trig condition1 [occurs X] [store condition2] followedby condition3
[occurs Y]

Trace for condition 1 that occurs X times with a conditional store, followed
by condition 2 that occurs Y times. See note below.

-trig condition1 [occurs X] [store condition2] followedby condition3
[occurs Y] [store condition4]

Trace for condition 1 that occurs X times with a conditional store, followed
by condition 2 that occurs Y times with a conditional store. See note below.

-trig position [percent | ?]

Controls the trigger position. The command uses an integer between 0 -
100 to represent the amount of data captured before trigger. To set trigger
at start of trace, set percent to 100. To set trigger at end of trace, set
percent to 0. For a trigger in the center, set percent to 50. See note below.

NOTE: Occurrence counts can NOT be used with duration triggers.

Conditions: A "condition" is a combination of Pattern, Range, and Edge definitions.
Patterns and ranges are defined as hex, octal, or binary numbers with
optional don't care digits. To specify the number base, a prefix is used:

#h: Hexadecimal
#q: Octal
#b: Binary
#e: Edge (see below)

The 'x' character denotes a don't care digit. So to define a simple
pattern condition, we might use something like this:

ADDR=#hFFFFXXXX

The above is a pattern condition that will search for a state when the
value of the ADDR label lies between 0xFFFF0000 and 0xFFFFFFFF.

To specify a range, two pattern specifiers are joined by a comma (,).
For example, to specify the same condition above as a range:
53

Chapter 3: Hardware Module Commands
analyzer
ADDR=#hFFFF0000,#hFFFFFFFF

To search for an edge or a glitch, we use an "edge specifier", defined by
"#e" followed by any combination of the following characters:

x don't care
r rising edge
f falling edge
t toggling edge
e either edge (same as toggling)
* glitch
g glitch (same as *)

Two conditions may be combined with an AND or an OR. For example:

ADDR=#hFFFF0000,#hFFFFFFFF and DATA=#exxxRxxxx

Would search for a rising edge in bit 5 of DATA while ADDR is within
the range 0xFFFF0000 - 0xFFFFFFFF.

Condition examples:

Pattern and Range Examples:

#hFFXX0022

Hexadecimal number with 2 don't care digits (8 don't care bits)

#q7777xxxx

Octal number with 4 don't care digits (12 don't care bits)

#b10110110xxxx0000

Binary number with 4 don't care bits

#hFF00,#hFFFF

Range from 0xff00 to 0xffff

NOTE: Don't care digits are not allowed in ranges.

Edge Examples:
#eXXXXRFEG

Edge specifier with 4 don't care bits, then Rising, Falling, Either, and
Glitch bits

Examples: analyzer -n Analyzer -trig addr=#h12e4c and ctl=#h00

Trigger when addr=0x12e4c and ctl=0.

analyzer -trig addr=#h12xx or addr=#h13xx store addr=#h1200,#h13ff
54

Chapter 3: Hardware Module Commands
analyzer
Setup trigger for default analyzer to start on addresses with don't cares
and store everything in the range 12xx to 13xx of label named "addr".

analyzer -trig addr=#h210 followedby addr=#h344

Trigger on access to address 210 followed by access to address 344.

analyzer -trig recall=1

Loads trigger setup from the recall buffer 1.

analyzer -trig recall="Enter Main"

Recalls a trigger setup named "Enter Main".

analyzer -n MyTarget -trig duration status=#h22 > 30 ns

Trigger analyzer named "MyTarget" when label status has value 22 for
more than 30 ns.

analyzer -trig duration rdwr!#h0 < 30 ns

Trigger when no rdwr is not 0 pattern is found for less than 30 ns.

analyzer -trig io=#exxxxxFxF and cycle=#h1

Trigger if bit 0 & 2 of label named "io" transition low while label cycle is at
pattern binary 1.

analyzer -n mybus -trig ctl=5 occurs 3

Triggers on the third occurrence of label "ctl=5".

analyzer -trig addr_hi=0 and addr_lo=340 followedby ioreg=6 occurs 15

Triggers on the 15th occurrence of "ioreg=6" after finding "addr_hi=0" and
"addr_lo=340".

analyzer -n mybus -trig position ?
100

Queries analyzer named "mybus" for its trigger position. It returns "100".

analyzer -trig position 33

Sets the trigger position of the active analyzer to 33 percent. Note: If an
integer over 100 is set, the number will be set to 100. If a negitive number
(below 0) is set, the number is set to 0.
55

Chapter 3: Hardware Module Commands
scope
scope

This command accesses the data captured by an active oscilloscope
module. The scope is selected by name or slot id, and can be queried
for information about data captured in the last run using the -i option,
or data can be uploaded using the -d option. In addition to the entire
data, data can also be uploaded from only channels of interest for a
specific range of data.

A "channel" can be either a single digit channel number, as in 1,2,3, or
4, or the channel label name, such as "Ground" or "rd/wr". Default label
names given to the channels are "Channel D1" where the "D" is actually
the slot number of the card and the "1" is the scope channel number
between 1 and 10 (if you have enough expansion cards).

The scope command has two series of options available:

• “Options to Access Data Capture” on page 56

• “Options to Access Trigger and Measurement Subsystems” on page 58

Options to Access Data Capture

Syntax: scope [-n name | -slot slot_id] [-i] -d [-l channellist | all]
[-r range | all] [-t timerange | all] -c [channellist | all]

Options: -n name

Selects the active scope module by name.

-slot slot_id

Selects a specific scope module by a slot_id. The slot identifier is A-J for
measurement modules.

-i

Query information on last data captured.

-c [1,2,... | all]

Query names of available channels.

-d [-l ch1,ch2,... | all] [-r start..end | all] [-t start..end
| all]
56

Chapter 3: Hardware Module Commands
scope
Begins upload of binary data out of scope.

NOTE: The -n name option is used to specify a specific scope module. If there is only
one active module, the -n name option is not required. However, if there are
multiple scope modules active, you must use the -n name at least once to
specify a module focus, then again each time you want to change the focus to
another scope module.

Returns: -i information query structure returns the following:

Run ID: 374199271
States: -16383..16384
Times: -8.191740e-06.. 8.192260e-06
4 labels
"State Number" 32 bits signed integer
"Time" 64 bits signed integer timescale picoseconds
"Channel A1" 15 bits yincrement 2.5247e-04 (volts/bit) yorigin -1.6203e+00
"Channel A2" 15 bits yincrement 2.5247e-04 (volts/bit) yorigin -1.6203e+00

Analog data such as scope data is given in its unsigned integer format,
and the -i information provides the scale factors needed to convert
back to floating-point voltages. For "Channel E1" above, there are 15-
bit integer values. To convert them to voltage, apply the following
(where value is the 15-bit integer):

voltage = yorigin + yincrement*value

-c channel information query structure returns the following:

1: "Channel A1" 15 bits yincrement 2.5247e-04
(volts/bit) yoffset -1.6203e+00
2: "Channel A2" 15 bits yincrement 2.5247e-04
(volts/bit) yoffset -1.6203e+00

Examples: scope -n Scope<E> -i

Query last data captured for scope named "Scope<E>".

Returns:
Run ID: 1250539440
States: -16383..16384
Times: -8.191659e-06..8.192341e-06
4 labels
"State Number" 32 bits signed integer
"Time" 64 bits signed integer timescale picoseconds
"Channel A1" 15 bits yincrement 2.5247e-04 (volts/bit)
yorigin -1.6203e+00
"Channel A2" 15 bits yincrement 2.5247e-04 (volts/bit)
57

Chapter 3: Hardware Module Commands
scope
yorigin -1.6203e+00

scope -c

Query available scope channels.

Returns:
1: "Channel A1" 15 bits yincrement 2.5247e-04 (volts/
bit) yoffset -1.6203e+00
2: "Channel A2" 15 bits yincrement 2.5247e-04 (volts/
bit) yoffset -1.6203e+00

scope -n Scope<E> -d -c all -t all

Upload all scope data.

Returns:
<begin binary data transfer>
...
<end transfer>

scope -d 1"Ground" -r -100..200

Upload specific data for channels "1" and "ground" in the range of -100 to
200 states.

Returns:
<begin binary data transfer>
...
<end transfer>

Options to Access Trigger and Measurement
Subsystems

Syntax: scope [-n name | -slot slot_id] [-c 1,2,...] [-1 channel1,channel2,..]
-meas [-type | all] [-range,... -tgmode]

Options: These options to the scope command allow setting and querying of
various measurement parameters and access to the automatic
measurement results.

A "channel" can be either a single digit channel number, as in 1,2,3, or
4, or the channel label name, such as "Ground" or "rd/wr". Default label
names given to the channels are "Channel D1" where the "D" is actually
the slot number of the card and the "1" is the scope channel number
58

Chapter 3: Hardware Module Commands
scope
between 1 and 10 (if you have enough expansion cards).

-n name

Selects the active scope named "name".

-slot slot_id

Selects a specific scope module by a slot_id. The slot identifier is A-J for
measurement modules.

-c channel number

Selects the channel named channel number.

-autoscale

Autoscale the scope.

-meas [type | all]

Query automatic measurement results. See "Automatic Measurement
Types and Returned Value" below.

-range [range | ?]

Set or query channel range (vertical).

-offset [offset | ?]

Set or query channel offset.

-trange [range | ?]

Set or query display range (horizontal).

-delay [delay | ?]

Set or query display delay.

-sweep [triggered | auto |?]

Set or query triggered or auto sweep.

-tglevel [N | ?]

Set or query the channel trigger level.

-tgsource [channel | ext | ?]

Set or query the trigger source.

-tgslope [rising | falling | ?]

Set or query the trigger slope.

-tgmode [edge | pattern | immediate | ?]
59

Chapter 3: Hardware Module Commands
scope
Set or query the trigger mode.

Automatic Measurement Types and Returned Values

all return structure with all measurement results.

falltime .90% to 10% time of left-most falling edge. Falltime:
0.000000268200

risetime 10% to 90% time of leftmost rising edge. Risetime:
0.000000420800

frequency Frequency: 9.9E37

preshoot Preshoot: 0.000000000000

overshoot Overshoot: 0.000000000000

period Period: 9.9E37

pwidth +Width: 9.9E37

nwidth -Width: 0.000003408333

vamp Vamp: 0.113105058670

vavg Vavg: -0.058784030290

vbase Vbase: -0.117573976517

vmax Vmax: -0.004468917847

vmin Vmin: -0.117573976517

vpp Vpp: 0.113105058670

vtop Vtop: -0.004468917847

vdcrms Vdcrms: 0.060179378230

vacrms Vacrms: 0.012887802882

To select which scope channel the measurement results come from,
use the "-c channel" option as follows:

scope -c 1 -meas all
or
scope -1 ìChannel E2î -meas period

To query the current setting of any of the trigger options, use a "?"
instead of a value. For example, to query the display time range:

scope -trange ?
60

Chapter 3: Hardware Module Commands
scope
To set the display range to 0.001 seconds (1 msec):

scope -trange 0.001

Examples: scope -n Oscilliscope -meas risetime

Query rise time of scope named "Oscilliscope" -c 1.

Returns:
Risetime:0.004

scope -tgsource 3

Set trigger source to channel 3.

scope -delay ?

Query current timebase delay.

Returns:
0.00346
61

Chapter 3: Hardware Module Commands
pattgen
pattgen

This command provides access to the pattern generator module. It
allows the user to to query or change the clock source, frequency, and
delay. The internal clock can be run from 1 to 180 MHz (or 300 MHz in
half channel mode). It also allows the user to load an ASCII stimulus
file into the pattern generator module. The user can query a vector
number for its value, or modify single vectors within a currently loaded
stimulus file.

Syntax: pattgen [-n name | -slot slot_id] -f vectorfile
pattgen [-n name] -v vector_num [label1=value1,label2=value2,...]
pattgen [-n name] -clock [frequency | ext | ?] -delay [delay | ?]

Options: -n name

Selects a pattern generator module. See the note below.

-slot slot_id

Selects a specific pattern generator module by a slot_id. The slot identifier
is A-J for measurement modules.

-f vectorfile

Loads an ASCII stimulus file named "vectorfile" into the target module.

-v vector_num [label1=value1,label2=value2,...]

Queries single vectors, or modifies single vectors with new values for each
specified label.

-clock [frequency | ext | ?]

Sets clock source to external mode or sets internal clock frequency. Also
queries for internal clock frequency.

-delay [delay | ?]

Sets or queries for clock output delay. Delay is set with an integer between
1 and 14.

-v -i vector_num [label1=value1, label2=value2, ...]

Insert a new vector at a specific position.

-v -d vector_num

Delete a specific vector.
62

Chapter 3: Hardware Module Commands
pattgen
NOTE: The -n name option is used to specify a specific pattern generator module. If
there is only one active module, the -n name option is not required. However,
if there are multiple pattern generator modules active, you must use the -n
name at least once to specify a module focus, then again each time you want
to change the focus to another pattern generator module.

Returns: -v vector_num query information structure returns the following:

label1=value
label2=value
etc...

Examples: pattgen -f mem_ctl

Loads vectors from the file named "mem_ctl".

pattgen -n Pattgen -v 3

First sets the focus to the pattern generator module named "Pattgen",
then queries for the value of vector number 3.

Returns:
data=3
ctl=3
chip_sel=0

pattgen -v 3 chip_sel=1

Modify the value in vector 3 under label "chip_sel" to a value of 1.

pattgen -clock 35

Set to use internal clock at 35 MHz.

pattgen -clock ?
35

Queries for internal clock rate. Returns 35 MHz.

pattgen -clock ext

Sets clock source to external mode.

pattgen -delay 4

Sets clock output delay to setting number 4.
63

Chapter 3: Hardware Module Commands
emulator
emulator

This command provides access to emulation probe HW modules.
Processor control includes resetting the processor, breaking into the
monitor, step, or starting the processor running (using the system
"start" command or the -run flag). It can also download binary
processor code into the target memory.

Syntax: emulator [-n name | -slot slot_id] [-reset | -break | -run | -step]

Options: -n name

Selects the emulator named "name". See the note below.

-slot slot_id

Selects the emulator in "slot_id". The slot identifier is 1-4 for emulation
modules.

-reset

Resets the processor on the target system.

-break

Breaks the target systemís processor into the monitor.

-run

Runs the processor.

-step

Steps the processor.

NOTE: The -n name option is used to specify a specific emulation module. If there is
only one active module, the -n name option is not required. However, if there
are multiple emulation modules, you must use -n name at least once to specify
an emulation module focus, then again each time you want to change the
focus to another emulation module.

Examples: emulator -n Emulator<1> -r

First sets the focus to the emulation module "Emulator<1>", then resets
the processor on the target system.

emulator -break
64

Chapter 3: Hardware Module Commands
emulator
Breaks the processor on the target system into the monitor.

emulator -run

Runs the processor on the target system.

emulator -step

Steps the processor on the target system.
65

Chapter 3: Hardware Module Commands
emulator
66

4

Software Tool Commands

In this chapter you will find a description of remote control commands
that act on the installed software tools.

• “listing” on page 69
67

Chapter 4: Software Tool Commands
• “compare” on page 71

• “fileout” on page 75
68

Chapter 4: Software Tool Commands
listing
listing

This command accesses the data displayed by an active lister. The
lister is accessed by it's logical name.

This command can return information on the last data captured
including data size, labels, and boundary ranges. You can then select
which labels of data you are interested in and transfer all states or a
partial range of data out the communication channel.

Syntax: listing [-n name] [-i] -d -l [labellist | all] -r [range | all]

Options: -n name

Specifies a specific lister tool display by name.

-i

Query for information on the last data captured.

-d -l [label1,label2,... | all]

Begins upload of ASCII LBP data out of the lister for a list of specific labels,
or all labels.

-r [start..end | all]

Specifies a range between start-state and end-state, or all states.

NOTE: The -n name option is used to specify a specific lister display. If there is only
one lister display, the -n name option is not required. However, if there are
multiple lister displays, you must use -n name at least once to specify a lister
display focus, then again each time you want to change the focus to another
lister display.

Returns: The -i query returns the following:

Run ID: 1799474489
States: -2032..2063
Times: -8.128000e-06..8.256000e-06
"State Number" 12 characters format Decimal
"Lab1" 4 characters format Hex
"Time" 11 characters format Absolute

NOTE: A maximum of 30,000 states can be transferred by this command.

Examples: listing -n Lister<2> -i
69

Chapter 4: Software Tool Commands
listing
Sets focus to Lister<2>, then queries for information on its last data
captured.

Returned:
Run ID: 1799474489
States: -2032..2063
Times: -8.128000e-06..8.256000e-06
"State Number" 12 characters format Decimal
"Lab1" 8 characters format Hex
"Time" 11 characters format Absolute

listing -n MEMBD -d -l all -r all

Sets focus to Lister named MEMBD, then uploads data on all labels in all
states.

Returns:
<begin ASCII transfer>
...
<end transfer>

listing -d -l addr,data -r -100..200

Uploads specific data for labels "addr" and "data" in the range of -100 to
200 states.

Returns:
<begin ASCII transfer>
...
<end transfer>
70

Chapter 4: Software Tool Commands
compare
compare

This command accesses the SW compare tool. A compare tool that is
active on the workspace automatically executes a compare against the
reference buffer whenever an analyzer captures a new trace.

The -i option returns the number of differences found. If the number -
1(-one) is returned, it means the compare has not been executed. The
-l option returns a list of label pairs and their masks.

There are two ways to do a compare. One is to compare a dataset with
a reference buffer, and another is to compare one dataset to another
from another tool (perhaps FileIn from a simulation).

The more typical compare is against a reference. In this case, label
pairs usually look like the following:

addr,addr_ref

Because it is possible to compare any two labels (for example,
"ADDR,DATA"), it is possible to set a compare mask by selecting both
pairs. For example, we have the following two label pairs:

ADDR,ADDR
and
ADDR,DATA

In order to set the mask on ADDR,DATA, we enter the following
command and option:

compare -m ADDR,DATA=#hffff0000

If all label pairs are unique, masks can be set by their first label in the
pair:

compare -m ADDR=#hffff0000

The comparison masks are values that are "ANDed" to the captured
trace label before it is diffed with the reference buffer. Therefore, a "1"
in a bit position means this bit is significant to compare and a "0" means
this bit is a don't care.

The -d, -r, and -s options allow the user to control the depth of the
compare, and then query the results of the last compare. The first use
model would be to start the compare with the "-x" option, then give it
an option to either stop after the "N" differences are found (or "N"
71

Chapter 4: Software Tool Commands
compare
matches if the compare was setup that way) or compare only a certain
range of states. The user could then issue the "-s" option to query for
the results of differences that were found.

NOTE: A maximum of 30000 differences can be reported for each invocation of the "-
s" option.

A second typical use model would be to start the compare but stop it
after the first difference was found using "compare -x -d 1". The user
would then query the compare information to see how many
differences were found using "compare -i". If "0" was returned, then no
differences were found. If "1" was returned, the user could query the
results to get the actual label values in the state that had differences
using "compare -s". This would return something like
"4,Ctl=3,Ctl_ref=04,Data=32,Data_ref=32".

A third typical use model would be to compare the states in ranges of
30000 and then cycle through the ranges to get the results of all the
differences. In this case, the user would use "compare -x -r 0..29999",
then "compare -i" to see how many differences were found. Again, use
"compare -s" to unload all differences, then resume with a new
compare in the next range of states using "compare -x -r 30000..59999".

Syntax: compare [-n name] [-i] [-l] -m [label1=mask1,label2=mask2,...]
compare -x [-d {N | all }] [-r {start..end | all}]
compare -s

Options: -n name

Sets focus to the active compare tool named "name".

-i

Query information on last comparison.

-x

Executes the compare.

-l

Lists current label pairs.

-m [lab1=mask | lab1,labl2=mask]

Query or set up label comparison masks.

-x [-d {N | all }] [-r {start..end | all}]
72

Chapter 4: Software Tool Commands
compare
Executes the compare with the option to stop the compare after N
matches. You can also have the compare only work in ranges of states.

-s

Queries for the results of the differences that were found.

NOTE: The -n name option is used to specify a specific compare tool. If there is only
one compare tool, the -n name option is not required. However, if there are
multiple compare tools, you must use -n name at least once to specify a
compare tool focus, then again each time you want to change the focus to
another compare tool.

Returns: The -i query returns the following:

67

The -s query returns the following:

state#,label1=value,label1_ref=value,label2=value,label2_ref=value, ...

The -l query structure returns the following:

label1,label1_ref (mask=0xff00)
label2,label2_ref

Examples: compare -n DMA_Comp<1> -i

Sets focus to compare tool named "DMA_Comp<1>", then queries for
status differences found.

Returns:
1

compare -m ctl=#hff00,-m data=#h00ff

Set up mask #hff00 on label ctl, and mask #h00ff on label data.

compare -m Lab1,Lab2=#hff00

Sets mask for a label pair using both primary and secondary labels.

compare -l

Lists the current label pairs and their masks. (If there are no masks,
nothing is listed).

Returns:
Current label pairs:
Lab1, Lab1_ref (mask=0Xff00)
Lab1, Lab2_ref
73

Chapter 4: Software Tool Commands
compare
compare -x

Re-execute compare.

compare -i

See if anything failed.

Returns:
0

compare -m data=#hff00 -x -i

Changes the mask for label data, executes a compare, and returns the
number of differences.

Returns:
23

compare -x -d 5

Executes a compare until 5 differences are found.

compare -s
2,Lab=20,Lab1_ref=21
50,Lab1=0,Lab1_ref=1
1123,Lab1=30,Lab1_ref=31

Returns the results of the last 3 differences found.

compare -x -d 3 -r 0..1000

Executes a compare over states 0 through 1000, OR until 3 differences are
found.
74

Chapter 4: Software Tool Commands
fileout
fileout

This command controls the saving of data from a fileout tool into a
specified file, and exporting data.

Syntax: fileout [-n name] [-f file] [-s]
fileout [-n name] -r [start..end | all]

Options: -n name

Sets focus to a specific fileout tool named "name".

NOTE: The -n name option is used to specify a specific fileout tool. If there is only one
fileout tool, the -n name option is not required. However, if there are multiple
fileout tools, you must use -n name at least once to specify a fileout tool focus,
then again each time you want to change the focus to another fileout tool.

-f file

Defines a filename named "file" to save to.

-s

Save data to file previously specified.

-r [start..end | all]

Select a range of states to export with fileout. Note: Ranging only works for
the Fast Binary output file format.

NOTE: When a partial range is selected, the range is automatically expanded (by
moving the starting state backward and the ending state forward) to meet
internal 1024-sample block boundaries, and the output file will contain more
samples than those specified.

Examples: fileout -n Fileout<1> -f pentium.out

Sets focus to the fileout tool named "Fileout<1>", then defines the save
filename to "pentium.out".

fileout -s

Save data to whatever file was defined with -f option. In this example, it
was "pentium.out".

fileout -r [0..1000]
75

Chapter 4: Software Tool Commands
fileout
Exports first 1000 states in Fast Binary output file format.
76

Glossary
absolute Denotes the time period
or count of states between a captured
state and the trigger state. An
absolute count of -10 indicates the
state was captured ten states before
the trigger state was captured.

acquisition Denotes one complete
cycle of data gathering by a
measurement module. For example,
if you are using an analyzer with
128K memory depth, one complete
acquisition will capture and store
128K states in acquisition memory.

analysis probe A probe connected
to a microprocessor or standard bus
in the device under test. An analysis
probe provides an interface between
the signals of the microprocessor or
standard bus and the inputs of the
logic analyzer. Also called a
preprocessor.

analyzer 1 In a logic analyzer with
two machines, refers to the machine
that is on by default. The default
name is Analyzer<N>, where N is
the slot letter.

analyzer 2 In a logic analyzer with
two machines, refers to the machine
that is off by default. The default
name is Analyzer<N2>, where N is
the slot letter.

arming An instrument tool must be

armed before it can search for its
trigger condition. Typically,
instruments are armed immediately
when Run or Group Run is selected.
You can set up one instrument to arm
another using the Intermodule

Window. In these setups, the second
instrument cannot search for its
trigger condition until it receives the
arming signal from the first
instrument. In some analyzer
instruments, you can set up one
analyzer machine to arm the other
analyzer machine in the Trigger

Window.

asterisk (*) See edge terms,
glitch, and labels.

bits Bits represent the physical logic
analyzer channels. A bit is a channel
that has or can be assigned to a label.
A bit is also a position in a label.

card This refers to a single
instrument intended for use in the
Agilent Technologies 16700A/B-
series mainframes. One card fills one
slot in the mainframe. A module may
comprise a single card or multiple
cards cabled together.

channel The entire signal path from
the probe tip, through the cable and
module, up to the label grouping.

click When using a mouse as the
77

Glossary
pointing device, to click an item,
position the cursor over the item.
Then quickly press and release the
left mouse button.

clock channel A logic analyzer
channel that can be used to carry the
clock signal. When it is not needed
for clock signals, it can be used as a
data channel, except in the Agilent
Technologies 16517A.

context record A context record is
a small segment of analyzer memory
that stores an event of interest along
with the states that immediately
preceded it and the states that
immediately followed it.

context store If your analyzer can
perform context store
measurements, you will see a button
labeled Context Store under the
Trigger tab. Typical context store
measurements are used to capture
writes to a variable or calls to a
subroutine, along with the activity
preceding and following the events. A
context store measurement divides
analyzer memory into a series of
context records. If you have a 64K
analyzer memory and select a 16-
state context, the analyzer memory is
divided into 4K 16-state context
records. If you have a 64K analyzer
memory and select a 64-state
context, the analyzer memory will be
78
divided into 1K 64-state records.

count The count function records
periods of time or numbers of state
transactions between states stored in
memory. You can set up the analyzer
count function to count occurrences
of a selected event during the trace,
such as counting how many times a
variable is read between each of the
writes to the variable. The analyzer
can also be set up to count elapsed
time, such as counting the time spent
executing within a particular function
during a run of your target program.

cross triggering Using intermodule
capabilities to have measurement
modules trigger each other. For
example, you can have an external
instrument arm a logic analyzer,
which subsequently triggers an
oscilloscope when it finds the trigger
state.

data channel A channel that
carries data. Data channels cannot be
used to clock logic analyzers.

data field A data field in the pattern
generator is the data value associated
with a single label within a particular
data vector.

data set A data set is made up of all
labels and data stored in memory of
any single analyzer machine or

Glossary
instrument tool. Multiple data sets
can be displayed together when
sourced into a single display tool. The
Filter tool is used to pass on partial
data sets to analysis or display tools.

debug mode See monitor.

delay The delay function sets the
horizontal position of the waveform
on the screen for the oscilloscope and
timing analyzer. Delay time is
measured from the trigger point in
seconds or states.

demo mode An emulation control
session which is not connected to a
real target system. All windows can
be viewed, but the data displayed is
simulated. To start demo mode,
select Start User Session from the
Emulation Control Interface and
enter the demo name in the
Processor Probe LAN Name field.
Select the Help button in the Start

User Session window for details.

deskewing To cancel or nullify the
effects of differences between two
different internal delay paths for a
signal. Deskewing is normally done
by routing a single test signal to the
inputs of two different modules, then
adjusting the Intermodule Skew so
that both modules recognize the
signal at the same time.

device under test The system
under test, which contains the
circuitry you are probing. Also known
as a target system.

don't care For terms, a "don't care"
means that the state of the signal
(high or low) is not relevant to the
measurement. The analyzer ignores
the state of this signal when
determining whether a match occurs
on an input label. "Don't care" signals
are still sampled and their values can
be displayed with the rest of the data.
Don't cares are represented by the X
character in numeric values and the
dot (.) in timing edge specifications.

dot (.) See edge terms, glitch,
labels, and don't care.

double-click When using a mouse
as the pointing device, to double-click
an item, position the cursor over the
item, and then quickly press and
release the left mouse button twice.

drag and drop Using a Mouse:
Position the cursor over the item, and
then press and hold the left mouse

button. While holding the left mouse
button down, move the mouse to
drag the item to a new location. When
the item is positioned where you
want it, release the mouse button.
79

Glossary
Using the Touchscreen:
Position your finger over the item,
then press and hold finger to the
screen. While holding the finger
down, slide the finger along the
screen dragging the item to a new
location. When the item is positioned
where you want it, release your
finger.

edge mode In an oscilloscope, this
is the trigger mode that causes a
trigger based on a single channel
edge, either rising or falling.

edge terms Logic analyzer trigger
resources that allow detection of
transitions on a signal. An edge term
can be set to detect a rising edge,
falling edge, or either edge. Some
logic analyzers can also detect no
edge or a glitch on an input signal.
Edges are specified by selecting
arrows. The dot (.) ignores the bit.
The asterisk (*) specifies a glitch on
the bit.

emulation module A module
within the logic analysis system
mainframe that provides an
emulation connection to the debug
port of a microprocessor. An E5901A
emulation module is used with a
target interface module (TIM) or an
analysis probe. An E5901B emulation
module is used with an E5900A
emulation probe.
80
emulation probe The stand-alone
equivalent of an emulation module.
Most of the tasks which can be
performed using an emulation
module can also be performed using
an emulation probe connected to
your logic analysis system via a LAN.

emulator An emulation module or
an emulation probe.

Ethernet address See link-level

address.

events Events are the things you
are looking for in your target system.
In the logic analyzer interface, they
take a single line. Examples of events
are Label1 = XX and Timer 1 > 400

ns.

filter expression The filter
expression is the logical OR
combination of all of the filter terms.
States in your data that match the
filter expression can be filtered out or
passed through the Pattern Filter.

filter term A variable that you
define in order to specify which
states to filter out or pass through.
Filter terms are logically OR'ed
together to create the filter
expression.

Format The selections under the
logic analyzer Format tab tell the

Glossary
logic analyzer what data you want to
collect, such as which channels
represent buses (labels) and what
logic threshold your signals use.

frame The Agilent Technologies or
16700A/B-series logic analysis system
mainframe. See also logic analysis

system.

gateway address An IP address
entered in integer dot notation. The
default gateway address is 0.0.0.0,
which allows all connections on the
local network or subnet. If
connections are to be made across
networks or subnets, this address
must be set to the address of the
gateway machine.

glitch A glitch occurs when two or
more transitions cross the logic
threshold between consecutive
timing analyzer samples. You can
specify glitch detection by choosing
the asterisk (*) for edge terms under
the timing analyzer Trigger tab.

grouped event A grouped event is
a list of events that you have
grouped, and optionally named. It can
be reused in other trigger sequence
levels. Only available in Agilent
Technologies 16715A or higher logic
analyzers.

held value A value that is held until

the next sample. A held value can
exist in multiple data sets.

immediate mode In an
oscilloscope, the trigger mode that
does not require a specific trigger
condition such as an edge or a
pattern. Use immediate mode when
the oscilloscope is armed by another
instrument.

interconnect cable Short name for
module/probe interconnect cable.

intermodule bus The intermodule
bus (IMB) is a bus in the frame that
allows the measurement modules to
communicate with each other. Using
the IMB, you can set up one
instrument to arm another. Data
acquired by instruments using the
IMB is time-correlated.

intermodule Intermodule is a term
used when multiple instrument tools
are connected together for the
purpose of one instrument arming
another. In such a configuration, an
arming tree is developed and the
group run function is designated to
start all instrument tools. Multiple
instrument configurations are done in
the Intermodule window.

internet address Also called
Internet Protocol address or IP
address. A 32-bit network address. It
81

Glossary
is usually represented as decimal
numbers separated by periods; for
example, 192.35.12.6. Ask your LAN
administrator if you need an internet
address.

labels Labels are used to group and
identify logic analyzer channels. A
label consists of a name and an
associated bit or group of bits. Labels
are created in the Format tab.

line numbers A line number (Line
#s) is a special use of symbols. Line
numbers represent lines in your
source file, typically lines that have
no unique symbols defined to
represent them.

link-level address Also referred to
as the Ethernet address, this is the
unique address of the LAN interface.
This value is set at the factory and
cannot be changed. The link-level
address of a particular piece of
equipment is often printed on a label
above the LAN connector. An
example of a link-level address in
hexadecimal: 0800090012AB.

local session A local session is
when you run the logic analysis
system using the local display
connected to the product hardware.

logic analysis system The Agilent
Technologies 16700A/B-series
82
mainframes, and all tools designed to
work with it. Usually used to mean
the specific system and tools you are
working with right now.

machine Some logic analyzers allow
you to set up two measurements at
the same time. Each measurement is
handled by a different machine. This
is represented in the Workspace
window by two icons, differentiated
by a 1 and a 2 in the upper right-hand
corner of the icon. Logic analyzer
resources such as pods and trigger
terms cannot be shared by the
machines.

markers Markers are the green and
yellow lines in the display that are
labeled x, o, G1, and G2. Use them to
measure time intervals or sample
intervals. Markers are assigned to
patterns in order to find patterns or
track sequences of states in the data.
The x and o markers are local to the
immediate display, while G1 and G2
are global between time correlated
displays.

master card In a module, the
master card controls the data
acquisition or output. The logic
analysis system references the
module by the slot in which the
master card is plugged. For example,
a 5-card Agilent Technologies 16555D
would be referred to as Slot C:

Glossary
machine because the master card is
in slot C of the mainframe. The other
cards of the module are called
expansion cards.

menu bar The menu bar is located
at the top of all windows. Use it to
select File operations, tool or system
Options, and tool or system level
Help.

message bar The message bar
displays mouse button functions for
the window area or field directly
beneath the mouse cursor. Use the
mouse and message bar together to
prompt yourself to functions and
shortcuts.

module/probe interconnect cable

The module/probe interconnect cable
connects an E5901B emulation
module to an E5900B emulation
probe. It provides power and a serial
connection. A LAN connection is also
required to use the emulation probe.

module An instrument that uses a
single timebase in its operation.
Modules can have from one to five
cards functioning as a single
instrument. When a module has more
than one card, system window will
show the instrument icon in the slot
of the master card.

monitor When using the Emulation
Control Interface, running the
monitor means the processor is in
debug mode (that is, executing the
debug exception) instead of
executing the user program.

panning The action of moving the
waveform along the timebase by
varying the delay value in the Delay
field. This action allows you to
control the portion of acquisition
memory that will be displayed on the
screen.

pattern mode In an oscilloscope,
the trigger mode that allows you to
set the oscilloscope to trigger on a
specified combination of input signal
levels.

pattern terms Logic analyzer
resources that represent single states
to be found on labeled sets of bits; for
example, an address on the address
bus or a status on the status lines.

period (.) See edge terms, glitch,
labels, and don't care.

pod pair A group of two pods
containing 16 channels each, used to
physically connect data and clock
signals from the unit under test to the
analyzer. Pods are assigned by pairs
in the analyzer interface. The number
of pod pairs available is determined
83

Glossary
by the channel width of the
instrument.

pod See pod pair

point To point to an item, move the
mouse cursor over the item, or
position your finger over the item.

preprocessor See analysis probe.

primary branch The primary
branch is indicated in the Trigger

sequence step dialog box as either
the Then find or Trigger on
selection. The destination of the
primary branch is always the next
state in the sequence, except for the
Agilent Technologies 16517A. The
primary branch has an optional
occurrence count field that can be
used to count a number of
occurrences of the branch condition.
See also secondary branch.

probe A device to connect the
various instruments of the logic
analysis system to the target system.
There are many types of probes and
the one you should use depends on
the instrument and your data
requirements. As a verb, "to probe"
means to attach a probe to the target
system.

processor probe See emulation

probe.
84
range terms Logic analyzer
resources that represent ranges of
values to be found on labeled sets of
bits. For example, range terms could
identify a range of addresses to be
found on the address bus or a range
of data values to be found on the data
bus. In the trigger sequence, range
terms are considered to be true when
any value within the range occurs.

relative Denotes time period or
count of states between the current
state and the previous state.

remote display A remote display is
a display other than the one
connected to the product hardware.
Remote displays must be identified to
the network through an address
location.

remote session A remote session is
when you run the logic analyzer using
a display that is located away from
the product hardware.

right-click When using a mouse for
a pointing device, to right-click an
item, position the cursor over the
item, and then quickly press and
release the right mouse button.

sample A data sample is a portion of
a data set, sometimes just one point.
When an instrument samples the
target system, it is taking a single

Glossary
measurement as part of its data
acquisition cycle.

Sampling Use the selections under
the logic analyzer Sampling tab to tell
the logic analyzer how you want to
make measurements, such as State
vs. Timing.

secondary branch The secondary
branch is indicated in the Trigger

sequence step dialog box as the Else

on selection. The destination of the
secondary branch can be specified as
any other active sequence state. See
also primary branch.

session A session begins when you
start a local session or remote

session from the session manager,
and ends when you select Exit from
the main window. Exiting a session
returns all tools to their initial
configurations.

skew Skew is the difference in
channel delays between
measurement channels. Typically,
skew between modules is caused by
differences in designs of
measurement channels, and
differences in characteristics of the
electronic components within those
channels. You should adjust
measurement modules to eliminate
as much skew as possible so that it
does not affect the accuracy of your

measurements.

state measurement In a state
measurement, the logic analyzer is
clocked by a signal from the system
under test. Each time the clock signal
becomes valid, the analyzer samples
data from the system under test.
Since the analyzer is clocked by the
system, state measurements are
synchronous with the test system.

store qualification Store
qualification is only available in a
state measurement, not timing

measurements. Store qualification
allows you to specify the type of
information (all samples, no samples,
or selected states) to be stored in
memory. Use store qualification to
prevent memory from being filled
with unwanted activity such as no-
ops or wait-loops. To set up store
qualification, use the While storing
field in a logic analyzer trigger
sequence dialog.

subnet mask A subnet mask blocks
out part of an IP address so that the
networking software can determine
whether the destination host is on a
local or remote network. It is usually
represented as decimal numbers
separated by periods; for example,
255.255.255.0. Ask your LAN
administrator if you need a the
subnet mask for your network.
85

Glossary
symbols Symbols represent
patterns and ranges of values found
on labeled sets of bits. Two kinds of
symbols are available:

• Object file symbols - Symbols
from your source code, and
symbols generated by your
compiler. Object file symbols may
represent global variables,
functions, labels, and source line
numbers.

• User-defined symbols - Symbols
you create.

Symbols can be used as pattern and
range terms for:

• Searches in the listing display.

• Triggering in logic analyzers and
in the source correlation trigger
setup.

• Qualifying data in the filter tool
and system performance analysis
tool set.

system administrator The system
administrator is a person who
manages your system, taking care of
such tasks as adding peripheral
devices, adding new users, and doing
system backup. In general, the
system administrator is the person
you go to with questions about
implementing your software.
86
target system The system under
test, which contains the
microprocessor you are probing.

terms Terms are variables that can
be used in trigger sequences. A term
can be a single value on a label or set
of labels, any value within a range of
values on a label or set of labels, or a
glitch or edge transition on bits
within a label or set of labels.

TIM A TIM (Target Interface
Module) makes connections between
the cable from the emulation module
or emulation probe and the cable to
the debug port on the system under
test.

time-correlated Time correlated
measurements are measurements
involving more than one instrument
in which all instruments have a
common time or trigger reference.

timer terms Logic analyzer
resources that are used to measure
the time the trigger sequence
remains within one sequence step, or
a set of sequence steps. Timers can
be used to detect when a condition
lasts too long or not long enough.
They can be used to measure pulse
duration, or duration of a wait loop. A
single timer term can be used to
delay trigger until a period of time
after detection of a significant event.

Glossary
timing measurement In a timing
measurement, the logic analyzer
samples data at regular intervals
according to a clock signal internal to
the timing analyzer. Since the
analyzer is clocked by a signal that is
not related to the system under test,
timing measurements capture traces
of electrical activity over time. These
measurements are asynchronous
with the test system.

tool icon Tool icons that appear in
the workspace are representations of
the hardware and software tools
selected from the toolbox. If they are
placed directly over a current
measurement, the tools automatically
connect to that measurement. If they
are placed on an open area of the
main window, you must connect them
to a measurement using the mouse.

toolbox The Toolbox is located on
the left side of the main window. It is
used to display the available
hardware and software tools. As you
add new tools to your system, their
icons will appear in the Toolbox.

tools A tool is a stand-alone piece of
functionality. A tool can be an
instrument that acquires data, a
display for viewing data, or a post-
processing analysis helper. Tools are
represented as icons in the main
window of the interface.

trace See acquisition.

trigger sequence A trigger
sequence is a sequence of events that
you specify. The logic analyzer
compares this sequence with the
samples it is collecting to determine
when to trigger.

trigger specification A trigger
specification is a set of conditions
that must be true before the
instrument triggers.

trigger Trigger is an event that
occurs immediately after the
instrument recognizes a match
between the incoming data and the
trigger specification. Once trigger
occurs, the instrument completes its
acquisition, including any store
qualification that may be specified.

workspace The workspace is the
large area under the message bar and
to the right of the toolbox. The
workspace is where you place the
different instrument, display, and
analysis tools. Once in the workspace,
the tool icons graphically represent a
complete picture of the
measurements.

zooming In the oscilloscope or
timing analyzer, to expand and
contract the waveform along the time
base by varying the value in the s/Div
87

Glossary
field. This action allows you to select
specific portions of a particular
waveform in acquisition memory that
will be displayed on the screen. You
can view any portion of the waveform
record in acquisition memory.
88

Index
A

ActiveX automation server, Agilent
IntuiLink, 19

Agilent IntuiLink ActiveX
automation server, 19

analyzer command, 45
analyzer command, data query, 49
analyzer command, module setup,

45
analyzer command, trigger

subsystem, 52
ASCII (procedural) user

application, 19
automatic measurement types, 60
automation server, Agilent

IntuiLink ActiveX, 19

C

clear command, 25
compare command, 71
config command, 26
configuration and setup, 9
configuration file use model, 14
ctl_port command, 27

D

data transfers, 17
debugging RPI programs, 16

E

emulator command, 64

F

fileout command, 75

H

hardware module commands, 43

I

in this guide, 2

IntuiLink ActiveX automation
server, 19

L

learning to program RPI, 16
listing command, 69
load-run-store use model, 14
lock command, 28

M

modules command, 29

O

overview, RPI diagram, 11

P

pattgen command, 62
procedural (ASCII) user

application, 19
programming conventions, 21

R

RPI architecture, 12
RPI for UNIX, 13
RPI general characteristics, 19
RPI overview, 2

S

sample programs, 18
scope command, 56
scope command, data capture, 56
scope command, trigger and

measurement, 58
session_mgr command, 32
setup and configuration, 9
setup, system, 15
software tool commands, 67
special telnet port address for RPI,

16
start command, 33
status command, 35
stop command, 37
system commands, 23
system setup, 15

T

tools command, 38

U

unlock command, 28
use model, 14

V

version command, 39

W

wait command, 40
89

Index
90

Publication Number: 5988-9067EN

s1

January 1, 2003

	Remote Programming Interface (RPI) for the Agilent Technologies 16700-Series Logic Analysis System
	Remote Programming Interface Programmer's Guide
	Contents
	Setup and Configuration
	Remote Programming Interface RPI Overview
	RPI Architecture
	RPI for UNIX
	Use Model
	Create a Configuration File
	Load-Run-Store

	System Setup
	Learning and Debugging RPI Programs
	Data Transfers
	Sample Programs
	RPI General Characteristics
	Agilent IntuiLink ActiveX Automation Server
	Procedural (ASCII) User Application

	Programming Conventions

	System Commands
	clear
	config
	ctl_port
	lock, unlock
	modules
	session_mgr
	start
	status
	stop
	tools
	version
	wait

	Hardware Module Commands
	analyzer
	Options for Module Setup
	Options for Data Query
	Options for the Trigger Subsystem

	scope
	Options to Access Data Capture
	Options to Access Trigger and Measurement Subsystems

	pattgen
	emulator

	Software Tool Commands
	listing
	compare
	fileout

	Glossary
	Index

